LAYER POTENTIALS FOR ELASTOSTATICS AND HYDROSTATICS IN CURVILINEAR POLYGONAL DOMAINS

JEFF E. LEWIS

ABSTRACT. The symbolic calculus of pseudodifferential operators of Mellin type is applied to study layer potentials on a plane domain Ω^+ whose boundary $\partial \Omega^+$ is a curvilinear polygon. A "singularity type" is a zero of the determinant of the matrix of symbols of the Mellin operators and can be used to calculate the "bad values" of p for which the system is not Fredholm on $L^p(\partial \Omega^+)$.

Using the method of layer potentials we study the singularity types of the system of elastostatics

$$L\mathbf{u} = \mu \Delta \mathbf{u} + (\lambda + \mu) \nabla \operatorname{div} \mathbf{u} = 0.$$

in a plane domain Ω^+ whose boundary $\partial\Omega^+$ is a curvilinear polygon. Here $\mu>0$ and $-\mu\leq\lambda\leq+\infty$. When $\lambda=+\infty$, the system is the Stokes system of hydrostatics. For the traction double layer potential, we show that all singularity types in the strip $0< \operatorname{Re} z<1$ lie in the interval $(\frac{1}{2},1)$ so that the system of integral equations is a Fredholm operator of index 0 on $L^p(\partial\Omega^+)$ for all p, $2\leq p<\infty$. The explicit dependence of the singularity types on λ and the interior angles θ of $\partial\Omega^+$ is calculated; the singularity type of each corner is independent of λ iff the corner is nonconvex.

Introduction

Recently there has been considerable interest in using layer potentials to solve L^p boundary value problems for elliptic operators and systems on a Lipschitz domain Ω^+ in \mathbf{R}^n . For the systems of elastostatics [DKV] and hydrostatics [FKV], Dahlberg, Fabes, Kenig, and Verchota have used Rellich type identities to prove that the double layer potential integral equations yield a Fredholm operator of index 0 on $L^2(\partial \Omega^+)$. For $p \neq 2$ only limited information is available on the boundary integral equations for general Lipschitz domains in \mathbf{R}^n . The general problem of the notion of symbol on the boundary of a general Lipschitz domain is still very much open.

In this paper we treat a very special case: a curvilinear polygonal domain in \mathbb{R}^2 . In this 2-dimensional case a precise symbolic calculus of pseudodifferential operators of Mellin type is available. We show that certain double layer boundary integral equations yield operators which for all p, $2 \le p < \infty$, are

Received by the editors December 14, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 35J25, 45E05.

Research partially supported by the Italian CNR.

Fredholm operators of index 0 on $L^p(\partial \Omega^+)$. The singularities exhibited for p < 2 show the limitations of the general theory.

We develop the theory of double layer potentials for treating boundary value problems for second order elliptic systems in a plane domain Ω^+ which is bounded by a curvilinear polygon $\partial\Omega^+$. The double layer potential operators on $L^p(\partial\Omega^+)$ are interpreted as systems of pseudodifferential operators of Mellin type, or more simply *Mellin operators*, on $L^p(0, 1)$. A symbolic calculus for Mellin operators was developed by Lewis and Parenti [LP] and J. Elschner [E]. Our particular interest is to explicitly calculate the singularity types. A *singularity type* of a system of Mellin operators \mathbf{K} is defined as a complex number z_0 , $\operatorname{Re} z_0 = \frac{1}{p}$, at which the determinant of the principal symbol, $\operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K})$, vanishes. Elschner [E] has used singularity types to construct parametrices and develop asymptotic expansions for solutions of the equation $\mathbf{Kf} = \mathbf{g}$. For a different approach to a symbol map on curves with corners, see Costabel [C].

In §1 we describe the algebra of Mellin operators on the finite interval $J \equiv [0, 1]$. We follow closely the notation of [E] since the parametrices have meromorphic symbols with poles at the singularity types.

In §2 we describe a class of double layer kernel operators and show that they are examples of Mellin operators; their principal symbols are calculated.

§3 gives a parametrization of a curvilinear polygon $\partial\Omega^+$ which reduces a system of double layer potential integral operators on $L^p(\partial\Omega^+)$ to a big system of operators of Mellin type on $L^p(J)$. The part of the symbol arising from each vertex P_k of $\partial\Omega^+$ is the same as for the corresponding operator in a plane sector of interior opening θ_k . Theorem 2 shows that the "bad values" of p for which the operators are not Fredholm on $L^p(\partial\Omega^+)$ are the same as for the sector problems; for the "good values" of p, the index of the system on $L^p(\partial\Omega^+)$ can be calculated from the change in argument of the principal symbol for the sector problems and Theorem 1 yields the index. Theorem 2 should be considered as a localization result.

In §4 we apply our results to for the system of linear elastostatics:

(0-1)
$$L\mathbf{u} = \mu \Delta \mathbf{u} + (\lambda + \mu) \nabla \operatorname{div} \mathbf{u} = 0.$$

The numbers μ and λ are the Lamé moduli; we assume $\mu>0$ and that $-\mu\leq\lambda\leq+\infty$. When $\lambda=-\mu$, the operator L is two copies of the Laplace operator; when $\lambda=+\infty$, we interpret the operator as the Stokes system of hydrostatics:

(0-2)
$$\begin{cases} L(\mathbf{u}, p) = \mu \Delta \mathbf{u} - \nabla p = 0, \\ \operatorname{div} \mathbf{u} = 0. \end{cases}$$

Our interest is in the description of the singularities of solutions in terms of the interior angles θ at the vertices of $\partial \Omega^+$ and the parameter λ . We state our results in terms of the normalized parameter b, defined as

$$(0-3) b = \frac{\lambda + \mu}{\lambda + 2\mu},$$

so that $0 \le b \le 1$.

The boundary operator of physical significance is the traction operator. The stress tensor $T = (T_{i,k})$ is defined by

$$(0-6) T_{i,k}(\mathbf{u}) = \lambda(\operatorname{div}\mathbf{u})\delta_{i,k} + \mu(u_{i,k} + u_{k,i}),$$

or in the case of the Stokes system ($\lambda = +\infty$),

(0-7)
$$T_{i,k}(\mathbf{u}, p) = -p(x)\delta_{i,k} + \mu(u_{i,k} + u_{k,i}),$$

where $u_{i,k} = \partial u_i/\partial x_k$. If $\vec{\nu}$ is the outward normal to Ω^+ at a point $P \in \partial \Omega^+$, the traction operator is

$$\mathbf{T}_{\vec{\nu}}(\mathbf{u}) = \mathbf{T}(\mathbf{u})\vec{\nu}.$$

We shall also consider another conormal boundary operator

(0-9)
$$\mathbf{N}_{\vec{v}}(\mathbf{u}) = \mu \frac{\partial \mathbf{u}}{\partial \vec{v}} + (\lambda + \mu)(\operatorname{div} \mathbf{u})\vec{v},$$

which for b=0 reduces to the Neumann boundary operator. Let Ω^- denote the complement of $\Omega^+ \cup \partial \Omega^+$. The boundary value problems we shall treat are

(1) The Dirichlet problems D_+ :

(0-10)
$$\begin{cases} L\mathbf{u} = 0 & \text{in } \Omega^{\pm}, \\ \mathbf{u}|_{\partial\Omega^{\pm}} = \mathbf{g} \in L^{p}(\partial\Omega^{+}). \end{cases}$$

(2) The traction problems T_{\pm} :

$$\begin{cases} L\mathbf{u} = 0 & \text{in } \Omega^{\pm}, \\ \mathbf{T}_{\vec{v}}(\mathbf{u})|_{\partial\Omega^{\pm}} = \mathbf{g} \in L^{p}(\partial\Omega^{+}). \end{cases}$$

(3) The Neumann problems N_{\pm} :

(0-12)
$$\left\{ \begin{array}{l} L\mathbf{u} = 0 \quad \text{in } \Omega^{\pm}, \\ \mathbf{N}_{\vec{\nu}}(\mathbf{u})|_{\partial\Omega^{\pm}} = \mathbf{g} \in L^{p}(\partial\Omega^{+}). \end{array} \right.$$

We represent the solutions of D_{\pm} as double layer potentials and the solutions of T_{\pm} and N_{\pm} as single layer potentials using the fundamental solution given by Kupradze [K, Chapter 9, (9.2)]:

(0-13)
$$\Gamma(X) = \left(\Gamma_{i,j}(X) \right) = \left(\delta_{i,j} \frac{n}{2\pi} \log r^2 - \frac{m}{\pi} \frac{X_i X_j}{r^2} \right),$$

with $r^2 = x_1^2 + x_2^2$ and

$$(0-14) n = \frac{\lambda + 3\mu}{2\mu(\lambda + 2\mu)}, \quad m = \frac{\lambda + \mu}{2\mu(\lambda + 2\mu)}.$$

This fundamental solution satisfies

$$(0-15) L(\Gamma(X)) = 2\delta(X) \mathbf{I},$$

where the operator L is applied to the columns of the matrix Γ . When b=1, we have n=m and as in Ladyzhenskaya [La, Chapter 3] introduce the fundamental pressure (row) vector:

$$\mathbf{q}(X) = \frac{1}{\pi} \frac{X}{r^2},$$

so that $\{\Gamma, \mathbf{q}\}$ is a solution of the adjoint Stokes system

(0-16)
$$\begin{cases} \mu \Delta \Gamma + \nabla \mathbf{q} = 2 \, \delta(X) \, \mathbf{I}, \\ \operatorname{div} \Gamma = 0. \end{cases}$$

The solution of $\,D_{\pm}\,$ is sought in the form of the double layer potential

$$\mathbf{u}_{\mathbf{T}}(X) = \int_{\partial \Omega^+} \mathbf{T}_{\vec{\nu}(Q)}(\mathbf{\Gamma}(X-Q)) \, \mathbf{f}(Q) \, d\sigma_Q.$$

Taking nontangential limits in $L^p(\partial\Omega^+)$ from inside and outside Ω^+ , and calling the resulting limits $\mathbf{u}_{\mathrm{T}}^\pm$, we obtain

$$(0-18) \qquad \mathbf{u}_{\mathbf{T}}^{\pm}(P) \equiv \mathbf{K}_{\mathbf{T}}^{\pm} \mathbf{f}(P) = \pm \mathbf{I} \mathbf{f}(P) + \text{p.v.} \int_{\partial \Omega^{+}} \mathbf{T}_{\vec{\nu}(Q)}(\mathbf{\Gamma}(P-Q)) \mathbf{f}(Q) \, d\sigma_{Q},$$

where even in the case where $\partial \Omega^+$ is flat the integral operator in (0–18) is not compact.

In a like manner the solutions of T_{\pm} and N_{\pm} are represented in the form of a single layer potential

(0-19)
$$\mathbf{u}_{\mathbf{S}}(X) = -\int_{\partial\Omega^{+}} \Gamma(X - Q) \mathbf{f}(Q) \, d\sigma_{Q}.$$

Applying the boundary operators T_\pm and N_\pm to u_S we obtain integral equations which are adjoints to the double layer integral equations; e.g.,

$$[\mathbf{T}_{\pm}(\mathbf{u}_{\mathbf{S}})\vec{\nu}](P) = (\mathbf{K}_{\mathbf{T}}^{\mp})^*\mathbf{f}(P).$$

In §4 we give explicit expressions for the kernels for elastostatics and hydrostatics in a plane sector.

In §5 we compute the symbols for the problems in a plane sector. Theorem 7 gives a very simple expression for the determinant of the matrix of symbols in terms of the parameter b and the interior angle θ .

In §6, we calculate the singularity types of $\mathbf{K}_{\mathbf{T}}^{\pm}$. We first summarize the results in a a plane sector in Theorem 8. Theorem 8 shows that there is a contrast in the cases of a corner of Ω^+ where Ω^+ is convex ($0 < \theta < \pi$), and the case of a reentrant corner ($\pi < \theta < 2\pi$). We first note that when b = 0, the operator $\mathbf{T}_{\vec{\nu}}$ does not cover L; however, $\mathbf{N}_{\vec{\nu}}$ covers L for $0 \le b \le 1$. The nature of the singularity types is

$$\mathbf{T}'_{\vec{v}(Q)}(\mathbf{\Gamma}(X-Q), \mathbf{q}) \equiv (\mathbf{q} \, \delta_{i,k} + \mu(\Gamma_{i,k} + \Gamma_{k,i})) \vec{v}(Q),$$

the stress tensor being applied to the columns of $\{\Gamma, \mathbf{q}\}$.

¹In the case b=1, the kernel $\mathbf{T}_{\vec{\nu}(Q)}(\mathbf{\Gamma}(X-Q))$ is replaced by

Case I. For $0 < \theta < \pi$, the Mellin operators $\mathbf{K}_{\mathbf{T}}^+$ and $\mathbf{K}_{\mathbf{N}}^+$ have the same singularities for $0 < b \le 1$. For 0 < b < 1, there are two singularity types in the strip 0 < Re z < 1; both singularity types are real and lie in $(\frac{1}{2}, 1)$. When b=1, there is a value $\gamma_{\rm crit}\approx 257^{\circ}27'$ for which there are two singularity types for $0<\theta<2\pi-\gamma_{\rm crit}$; for $2\pi-\gamma_{\rm crit}\leq\theta<\pi$, there is only one singularity type in the strip.

Case II. For $\pi < \theta < 2\pi$, the singularity types for $\mathbf{K}_{\mathbf{T}}^+$ in the strip $0 < \mathrm{Re}\,z < 1$ are independent of b, lie in $(\frac{1}{2}, 1)$ and approach $\frac{1}{2}$ as θ approaches 2π ; there is one singularity type in the strip for $\pi < \theta \le \gamma_{\rm crit}$; a second singularity type develops for $\gamma_{\rm crit} < \theta < 2\pi$.

Finally, Theorem 9 summarizes the "good values" and "bad values" of p for the double layer potential integral equations on $L^p(\partial\Omega^+)$, where $\partial\Omega^+$ is a curvilinear polygon.

1. Mellin operators on a finite interval

Algebras of Mellin operators on $J \equiv [0, 1]$ are defined in [LP, Definition (4.1)] and [E, Definition (4.1)]. We follow closely the notions of [E] since Elschner develops an extension to meromorphic symbols which arise in constructing parametrices. For $0 \le \alpha < \beta \le 1$, define the strip $\Gamma_{\alpha,\beta} = \{z \in \mathbb{C} : \alpha < \beta \le 1 \}$ $\alpha < \text{Re } z < \beta \}$, and let Γ_{γ} be the line $\{z = \gamma + i\xi : -\infty \le \xi \le +\infty \}$. The symbol space $\hat{\Sigma}^0_{\alpha,\beta}$ is defined in [E, Definition (1.12)].

For $f \in C_0^{\infty}(\mathbb{R}^+)$ define the *Mellin transform* of f by

(1-1)
$$\mathscr{M}f(z) = \tilde{f}(z) = \int_0^\infty t^{z-1} f(t) \, dt.$$

Let $\partial = -td/dt$, and for $a \in \tilde{\Sigma}^0_{\alpha,\beta}$, we define the Mellin operator $a(t,\partial) \in$ Op $\tilde{\Sigma}_{\alpha,\beta}^0$ by

(1-2)
$$a(t, \partial) f(t) = \frac{1}{2\pi i} \int_{\text{Re } z = \gamma} t^{-z} a(t, z) \tilde{f}(z) \, dz,$$

with $\gamma \in (\alpha, \beta)$.

If $f \in L^p(J)$ let Rf be the reflection

(1-3)
$$Rf(t) = f(1-t).$$

Definition 1.1. An operator A from $C_0^{\infty}(J)$ to $C^{\infty}(J)$ is a Mellin operator in the class Op $\Sigma_{\alpha,\beta}(J)$ iff

(1) For all $\phi, \psi \in C_0^{\infty}([0, 1))$, there are operators $a_{0\phi\psi}(t, \partial) \in \operatorname{Op} \tilde{\Sigma}_{\alpha.\beta}^0$ and $C_{0\phi w}$, compact on $L^p(J)$ for all p with $\frac{1}{p} \in (\alpha, \beta)$, such that

$$\phi A \psi = a_{0\phi\psi}(t, \partial) + C_{0\phi\psi}.$$

- (2) If ϕ , $\psi \in C^{\infty}([0, 1])$ have disjoint supports, the operator $\phi A \psi$ is compact on $L^p(J)$, $\frac{1}{p} \in (\alpha, \beta)$.

 (3) The operator $A^R \equiv RAR$ satisfies conditions (1) and (2).

To define the *principal symbol*, $\mathrm{Smbl}^{\frac{1}{p}}(A)$, for A as an operator on $L^p(J)$, we use that there are uniquely defined functions $a_0(z)$, $a_{0\pm}(t)$ such that for all ϕ , $\psi \in C_0^\infty([0\,,\,1))$,

$$(1-5) \hspace{1cm} \begin{array}{c} a_{0\phi\psi}(0\,,\,z) = \phi(0)a_0(z)\psi(0)\,, \qquad z \in \Gamma_{\alpha\,,\,\beta}\,, \\ a_{0\phi\psi}(t\,,\,\frac{1}{p} \pm i\infty) = \phi(t)a_{0\pm}(t)\psi(t)\,, \qquad 0 \leq t < 1\,,\,\frac{1}{p} \in (\alpha\,,\,\beta). \end{array}$$

There are uniquely defined functions $a_1(z)$, $a_{1\pm}(t)$ such that for all ϕ , $\psi \in C_0^{\infty}([0,1))$,

$$(1-6) \qquad \begin{array}{c} (a^R)_{0\phi\psi}(0\,,\,z) = \phi(0)a_1(z)\psi(0)\,, \qquad z \in \Gamma_{\alpha\,,\,\beta}\,, \\ (a^R)_{0\phi\psi}(t\,,\,\frac{1}{p} \pm i\infty) = \phi(t)a_{1\pm}(t)\psi(t)\,, \qquad 0 \leq t < 1\,,\,\frac{1}{p} \in (\alpha\,,\,\beta). \end{array}$$

Moreover

(1-7)
$$a_{0+}(t) = a_{1+}(1-t), \quad 0 < t < 1.$$

Let $\mathscr{R}_{I}^{\frac{1}{p}}$ be the oriented boundary of the rectangle:

$$t = 0 t \in [0, 1] t = 1$$

$$\frac{1}{p} + i\infty$$

$$\Gamma_{\frac{1}{p}} \uparrow \mathcal{R}_{J}^{\frac{1}{p}} \downarrow \Gamma_{\frac{1}{p}}$$

$$\frac{1}{p} - i\infty$$

$$t = 0 t \in [0, 1] t = 1$$

Definition 1.2. Let $A \in \operatorname{Op} \Sigma_{\alpha,\beta}(J)$ and $\frac{1}{p} \in (\alpha,\beta)$. The principal symbol of A as an operator on $L^p(J)$, $\operatorname{Smbl}^{\frac{1}{p}}(A)$, is the quadruple of functions $a_0(\frac{1}{p}+i\xi)$, $a_{0+}(t)=a_{1-}(1-t)$, $a_1(\frac{1}{p}+i\xi)$, $a_{0-}(t)=a_{1+}(1-t)$, considered as a continuous function on $\mathcal{R}_I^{\frac{1}{p}}$:

$$t = 0 a_{0+}(t) = a_{1-}(1-t) t = 1$$

$$\begin{vmatrix} \frac{1}{p} + i\infty \\ a_0(\frac{1}{p} + i\xi) \\ \frac{1}{p} - i\infty \end{vmatrix} \alpha_{0+}(t) = a_{1-}(1-t) t = 1$$

$$(1-9) t = 0 a_{0-}(t) = a_{1+}(1-t) t = 1$$

 $\begin{array}{lll} \textbf{Definition 1.3.} & Let \ A = \left(A_{ij}\right) \ be \ an \ N \times N \ \ matrix \ of \ operators \ in \ \operatorname{Op} \Sigma_{\alpha,\,\beta}(J) \,. \\ The \ system \ A \ \ is \ elliptic \ on \ \ L^p(J)^2 \ \ iff \ \operatorname{Smbl}^{\frac{1}{p}}A \ \ is \ a \ nonsingular \ matrix \ on \\ \mathscr{R}_J^{\frac{1}{p}} \,. \ A \ number \ \ z_0 \in \Gamma_{\alpha,\,\beta} \ \ is \ a \ singularity \ type \ for \ A \ \ at \ t = 0 \ \ [t = 1] \ \ if \\ \underline{\left(1-10\right)} \qquad & \det(\operatorname{Smbl}^{\frac{1}{p}}(A)(0,\,z_0)) = 0 \ \ \ [\det(\operatorname{Smbl}^{\frac{1}{p}}(A)(1,\,z_0)) = 0]. \\ \end{array}$

²For brevity we write $L^p(J)$ for $[L^p(J)]^N$.

The following is shown in [E, Theorems 4.4 and 4.6] and [LP, Theorems 4.1 and 4.2].

Theorem 1. Let $A=\left(A_{ij}\right)$ be an $N\times N$ matrix of operators in $\operatorname{Op}\Sigma_{\alpha,\,\beta}(J)$. Then

- (1) A is a Fredholm operator on $L^p(J)$ iff A is elliptic on $L^p(J)$.
- (2) If A is elliptic on $L^p(J)$, define

$$(1-11) \qquad \operatorname{ind}_p(A) = \dim((\ker A) \cap L^p(J)) - \dim((\ker A^*) \cap L^{p/p-1}(J)).$$

Then

$$\mathrm{ind}_p(A) = \frac{1}{2\pi} \Delta_{\mathcal{R}_I^{\frac{1}{p}}} \left\{ \mathrm{arg}(\mathrm{det}(\mathrm{Smbl}^{\frac{1}{p}}A)) \right\},$$

where the change in arg is taken as $\mathcal{R}_J^{\frac{1}{p}}$ is traversed in the clockwise direction.

Remark. In treating boundary value problems in domains with corners it is useful to regard Mellin operators as acting on weighted spaces, e.g., $L^{p,\sigma}(J) \equiv \{f\colon t^{\sigma}f(t)\in L^p(J)\}$. In this case we suppose that both $\frac{1}{p}+\sigma$ and $\frac{1}{p}$ lie in (α,β) . The principal symbol would be defined on the oriented rectangle $\mathscr{R}_J^{\frac{1}{p}+\sigma,\frac{1}{p}}$ whose left-hand side is the contour $\Gamma_{\frac{1}{p}+\sigma}$, and whose right-hand side is the contour $\Gamma_{\frac{1}{p}}$. Cf. [E], but note that our notation differs slightly from [E, (4.8) ff.]. The approach of weighted spaces is especially useful where different weights may be introduced at different vertices of a polygon.

When double layer potentials on a curvilinear polygon $\partial \Omega^+$ are reduced to a system of Mellin operators as in §3, the operators near t=1 will correspond to a smooth part of $\partial \Omega^+$ so that singularities at t=1 will not appear; the change in arg of $\det(\mathrm{Smbl}^{\frac{1}{p}}A)$ will occur entirely on the contour $\Gamma_{\frac{1}{p}}$ on the left-hand side of (1-8).

2. Examples of Mellin operators

In this section we give examples of Mellin operators in $\operatorname{Op}\Sigma_{0,\,1}(J)$.

1. The finite Hilbert transform H is defined by

(2-1)
$$Hf(t) = \text{p.v.} \frac{1}{\pi} \int_0^1 \frac{f(s)}{t-s} \, ds.$$

H is in Op $\Sigma_{0,1}(J)$ and Smbl^{$\frac{1}{p}$} H is

$$t = 0 + i \qquad t = 1$$

$$\frac{1}{p} + i\infty$$

$$-\cot \pi z \qquad \uparrow \qquad \mathcal{R}_{J}^{\frac{1}{p}} \qquad \downarrow \qquad +\cot \pi z$$

$$\frac{1}{p} - i\infty$$

$$t = 0 - i \qquad t = 1$$

2. Let $k(t) \in \mathscr{F}'_{-\infty,1}$ [LP, Definition 1.1]; i.e., $k(t) \in C^{\infty}([0,\infty))$ and for every $l \geq 0$, $\delta > 0$, $\partial^l k(t) = O(t^{-1+\delta})$ as $t \to \infty$. Define the *Hardy kernel operator* by

(2-3)
$$Kf(t) = \int_0^1 k\left(\frac{t}{s}\right) f(s) \, \frac{ds}{s}.$$

Then $K \in \text{Op } \Sigma_{0,1}(J)$ and $\text{Smbl}^{\frac{1}{p}} K$ is

$$t = 0 0 t = 1$$

$$\frac{1}{p} + i\infty$$

$$\tilde{k}(z)$$

$$\frac{1}{p} - i\infty$$

$$t = 0 0 t = 1$$

$$0$$

$$\frac{1}{p} - i\infty$$

$$t = 0 0 t = 1$$

Definition 2.1. A function k(x, y) is a double layer kernel if

- $(1) \quad k \in C^{\infty}(\mathbf{R}^2 \setminus \{0\}),$
- (2) k is homogeneous of degree -1 and odd: for all $\lambda \neq 0$, $k(\lambda x, \lambda y) = \lambda^{-1}k(x, y)$.
- 3. Let k(x, y) be a double layer kernel and $0 < \theta < 2\pi$. Define

(2-5)
$$K_{\theta}f(t) = \int_0^1 k(t - s\cos\theta, -s\sin\theta)f(s) \, ds.$$

Then K_{θ} is a Hardy kernel operator with kernel

(2-6)
$$k_{\theta}(t) = k(t - \cos \theta, -\sin \theta).$$

4. Let k(x, y) be a double layer kernel. Then

(2-7)
$$\lim_{y\to 0^{\pm}} \int_0^1 k(t-s,y)f(s)\,ds = \pm c_k f(t) + \pi k(1,0)Hf(t),$$

where

$$(2-8) c_k = \lim_{R \to \infty} \int_{-R}^R k(x, 1) \, dx = \lim_{\epsilon \to 0^+} \int_{\epsilon}^{\pi - \epsilon} \frac{k(\cos \theta, \sin \theta)}{\sin \theta} \, d\theta.$$

This is simply the observation that if we let

$$\phi(t) = \begin{cases} k(t, 1) - k(1, 0)/t, & |t| > 1, \\ k(t, 1), & |t| < 1, \end{cases}$$

then $\phi(t) = O(1/t^2)$ as $|t| \to \infty$, so that $\phi \in L^1(\mathbf{R})$. The function

$$\frac{1}{v} \int_0^1 \phi(\frac{t-s}{v}) f(s) \, ds$$

is dominated by the Hardy-Littlewood maximal function of f and approaches $\pm (\int \phi(x) dx) f$ in $L^p(J)$ (cf. Stein [St]). Since k(x, 0) = k(1, 0)/x is an odd function, $(\int \phi(x) dx)$ is given by (2-8).

5. Let $\vec{k}(x, y)$ be a double layer kernel. Let $\vec{\gamma}_j$, j = 1, 2, be two C^{∞} curves which intersect only at (0, 0). Assume that $d\vec{\gamma}_j/dt\Big|_{t=0} = \vec{u}_j$ are unit vectors, $\vec{u}_1 \neq \vec{u}_2$, so that $\vec{\gamma}_j(t) = t\vec{u}_j + \vec{\varepsilon}_j(t)$, with $\vec{\varepsilon}_j(t) = O(t^2)$. Let

(2-9)
$$K^{12}f(t) = \int_0^1 k(\vec{\gamma}_1(t) - \vec{\gamma}_2(s))f(s) \left| \frac{d\vec{\gamma}_2}{ds} \right| ds.$$

Then K^{12} is a Mellin operator whose principal symbol is the same as that of the Hardy kernel operator with kernel

$$k^{12}(t) = k(t\vec{u}_1 - \vec{u}_2).$$

To show this we assume $\vec{u}_1=(1\,,0)$ and $\vec{u}_2=(\cos\theta\,,\sin\theta)\,,\,0<\theta<2\pi$. Then $k(\vec{\gamma}_1(t)-\vec{\gamma}_2(s))=k(t-s\cos\theta\,,-s\sin\theta)+R(t\,,s)$, where

(2-10)
$$R(t,s) = \int_0^1 \vec{\varepsilon}(t,s) \cdot \nabla k((t-s\cos\theta, -s\sin\theta) + \tau \vec{\varepsilon}(t,s)) d\tau$$

with $\vec{\varepsilon}(t, s) = \vec{\varepsilon}(t) - \vec{\varepsilon}(s)$. Since $|\vec{\gamma}_1(t) - \vec{\gamma}_2(s)| \approx t + s$, we can differentiate wrt t to show that

$$f(t) \mapsto \frac{d}{dt} \int_0^1 R(t, s) f(s) ds$$

can be dominated by a Hardy kernel operator. Hence $f(t) \mapsto \int_0^1 R(t, s) f(s) ds$ is a compact operator on $L^p(J)$.

6. Let $\vec{\gamma}(t)$, $0 \le t \le 1$, be a C^{∞} curve and k(x,y) a double layer kernel. Let

(2-11)
$$K_{\vec{\gamma}}f(t) = \text{p.v.} \int_0^1 k(\vec{\gamma}(t) - \vec{\gamma}(s))f(s) \left| \frac{d\vec{\gamma}}{ds} \right| ds.$$

Then $K_{\vec{\gamma}} \in \text{Op } \Sigma_{0,1}(J)$ and has the same symbol as $\pi k(\vec{\gamma}'(t))|d\vec{\gamma}/dt|H$. Observe that if $\vec{\gamma}(t) - \vec{\gamma}(s) = \vec{\gamma}'(t)(t)(t-s) + \vec{\epsilon}(t,s)$, then

$$k(\vec{\gamma}(t) - \vec{\gamma}(s)) - \frac{k(\vec{\gamma}'(t))}{t - s} = \int_0^1 \vec{\varepsilon}(t, s) \cdot \nabla k(\vec{\gamma}'(t)(t - s) + \tau \vec{\varepsilon}(t, s)) d\tau,$$

which gives rise to a compact operator on $L^p(J)$.

-

7. In Example 6 assume that $\vec{\gamma}$ is smooth for $-1 \le t \le +1$ and $d\vec{\gamma}(0)/dt = \vec{u}$. For $0 \le t \le 1$, let $\vec{\gamma}_1(t) = \vec{\gamma}(t)$, $\vec{\gamma}_2(t) = \vec{\gamma}(-t)$. The operator K^{12} of (2-9) has the same symbol as the Hardy kernel $k(\vec{u})\frac{1}{t+1}$. The kernel $s(t) = \frac{1}{\pi}\frac{1}{t+1}$ is the kernel for the Stieltjes transform and $\tilde{s}(z) = \csc \pi z$ [LP, (4.30)]. In particular, if we break a smooth curve $\vec{\gamma}(t)$, $-1 \le t \le 1$ at t = 0 the Hilbert transform p.v. $\int_{-1}^{+1} k(\vec{\gamma}(t) - \vec{\gamma}(s)) f(s) |d\vec{\gamma}/ds| \, ds$ is equivalent to the matrix of operators

(2-12)
$$K = \begin{pmatrix} H_{\vec{\gamma}_1} & K^{12} \\ K^{21} & H_{\vec{\gamma}_2} \end{pmatrix},$$

which has principal symbol at t = 0 given by

(2-13)
$$\pi k(\vec{u}) \times \begin{pmatrix} -\cot \pi z & \csc \pi z \\ -\csc \pi z & \cot \pi z \end{pmatrix}.$$

Note that the characteristic polynomial of the matrix in (2-13) is $p(\lambda) = (\lambda + i)(\lambda - i)$.

3. Layer potentials on curvilinear polygons

Let Ω^+ be a simply connected domain in \mathbb{R}^2 whose boundary is a simple closed curvilinear polygon. As $\partial\Omega^+$ is traversed in the counterclockwise direction label the successive N vertices as P_2 , P_4 , ..., $P_{2N}=P_0$. Let $\overrightarrow{P_iP_j}$ be the oriented piece of $\partial\Omega^+$ between P_i and P_j . Suppose that $\overrightarrow{P_{2k}P_{2k+2}}$ is parametrized by $\vec{\gamma}(t)$, $0 \le t \le 2$. For $k=1,\ldots,N$, we introduce the false vertices $P_{2k-1}=\vec{\gamma}_{2k-2}(1)$ and then parametrize $\overrightarrow{P_{2k}P_{2k-1}}$ by $\vec{\gamma}_{2k-1}(t)\equiv\vec{\gamma}_{2k-2}(2-t)$, $0 \le t \le 1$. When t=0 each parametrization is at one of the original vertices; if t=1, we are at a "midpoint". For $i=1,\ldots,2N$, let θ_i be the angle interior to Ω^+ at P_i , $0 < \theta_i < 2\pi$; of course $\theta_{2k-1}=\pi$. We assume that at t=0, 1, $d\vec{\gamma}_j/dt$ are unit vectors; the arclength on $\overrightarrow{P_iP_{i+1}}$ is given by $d\sigma=(-1)^i|d\vec{\gamma}_i/dt|dt$.

For f a scalar or vector function in $L^p(\partial \Omega^+)$, we define $f^i(t) = f(\vec{\gamma}_i(t))$, $0 \le t \le 1$, $i = 1, \ldots, 2N$.

Assume that c(x,y) is scalar or matrix function such that for each i, $i=1,\ldots,2N$, $c^i(t)=c(\vec{\gamma}_i(t))$ is a smooth function. Let k(x,y) be an odd double layer kernel. We define the double layer potential

(3-1)
$$Kf(P) = c(P)f(P) + \text{p.v.} \int_{\partial \Omega^+} k(P-Q)f(Q) d\sigma_Q.$$

Let

(3-2)
$$K^{i,j}f^j(t) = \delta_{i,j}c^j(t)f^j(t) + \text{p.v.} \int_0^1 k(\vec{\gamma}_i(t) - \vec{\gamma}_j(s))f^j(s)(-1)^j \left| \frac{d\vec{\gamma}_j}{ds} \right| ds$$
,

 $^{^3}$ If Ω^+ is multiply connected we apply the method to each component of $\,\partial\Omega^+$.

so that

$$(Kf)^{i}(t) = \sum_{j=1}^{2N} K^{i,j} f^{j}(t);$$

we write $\mathbf{K} = (K^{i,j})_{i,j=1,\dots,2N}$ for the operator K interpreted as a big system of Mellin operators on $L^p(J)$.

Except in the cases j=i-1, i, $i+1 \pmod{2N}$, the operators $K^{i,j}$ have smooth kernels and thus are compact operators on $L^p(J)$. The operators $K^{2k,2k-1}$ and $K^{2k-1,2k}$ are Hardy kernel operators whose symbol is calculated by (2-7); in particular their principal symbol vanishes for t>0. The operators $K^{2k,2k+1}$ and $K^{2k+1,2k}$ have principal symbol which vanishes for 0 < t < 1; near t=1, to calculate $\det(\operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K}))$, we can apply an even number of row and column transpositions to reduce the symbol matrix to 2×2 block diagonal form. After applying the reflection (1-3), we are again reduced to considering the previous case at t=0 with angle $\theta_{2k+1}=\pi$. The determinants of the matrix of principal symbols are summarized in Theorem 2.

Theorem 2. For i = 1, ..., 2N, (mod 2N), let $K^{(i)}$ denote the matrix of blocks

(3-3)
$$K^{(i)} = \begin{pmatrix} K^{i-1, i-1} & K^{i-1, i} \\ K^{i, i-1} & K^{i, i} \end{pmatrix}.$$

Then at t = 0,

(3-4)
$$\det(\operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K})) = \prod_{i=1}^{N} \det(\operatorname{Smbl}^{\frac{1}{p}}(K^{(2i)})).$$

At t = 1.

(3-5)
$$\det(\operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K})) = \prod_{i=1}^{N} \det(\operatorname{Smbl}^{\frac{1}{p}}(K^{(2i-1)})).$$

At $z = \frac{1}{p} \pm i \infty$,

(3-6)
$$\det(\operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K})) = \prod_{i=1}^{2N} \det(\operatorname{Smbl}^{\frac{1}{p}}(K^{i,i})).$$

4. Elastostatic double layer potentials in a plane sector

We give explicit calculations for the double layer potentials for the system of elastostatics and hydrostatics in a plane sector. In this section we fix θ , $0 < \theta < 2\pi$, and let Ω^+ be the sector of opening θ :

(4-1)
$$\Omega^{+} = \{(x, y) : x = r \cos \phi, y = r \sin \phi, 0 < r < \infty, 0 < \phi < \theta\}.$$

Denote the two pieces of $\partial\Omega^+$ as $S_1=\{(\tau,\rho)\colon \tau>0, \rho=0\}$ and $S_2=\{(\tau,\rho)\colon \tau=l\cos\theta, \rho=l\sin\theta, l>0\}$. We denote by $\vec{\nu}_1=-\mathbf{j}$ and

 $\vec{\nu}_2 = -\sin\theta \mathbf{i} + \cos\theta \mathbf{j}$ the exterior normals to Ω^+ along S_1 and S_2 . For a vector function $\mathbf{f} \in L^p(\partial\Omega^+)$, let $\mathbf{f}^1(t) = \mathbf{f}(t,0)$, $\mathbf{f}^2(t) = \mathbf{f}(t\cos\theta$, $t\sin\theta$).

For $(t, s) \notin \partial \Omega^+$, the double layer potential is defined as in (0-17):

$$\mathbf{u}_{\mathbf{T}}(t,s) = \int_{\partial\Omega^{+}} \mathbf{T}_{\vec{\nu}(\tau,\rho)}(\mathbf{\Gamma}(t-\tau,s-\rho))\mathbf{f}(\tau,\rho) d\sigma_{\tau,\rho}$$

$$= \int_{0}^{\infty} \mathbf{T}_{\vec{\nu}_{1}}(\mathbf{\Gamma}(t-\tau,s))\mathbf{f}^{1}(s) d\tau$$

$$+ \int_{0}^{\infty} \mathbf{T}_{\vec{\nu}_{2}}(\mathbf{\Gamma}(t-l\cos\theta,s-l\sin\theta))\mathbf{f}^{2}(l)(-1) dl.$$

We have

(4-3)
$$\lim_{s \to 0^{\pm}} \mathbf{u}_{\mathbf{T}}(t, s) = (\mathbf{u}_{\mathbf{T}}^{\pm})^{1}(t) = \mathbf{K}_{\mathbf{T}}^{\pm 11} \mathbf{f}^{1}(t) + \mathbf{K}_{\mathbf{T}}^{12} \mathbf{f}^{2}(t),$$

where

(4-4)
$$\mathbf{K}_{\mathbf{T}}^{\pm 11} \mathbf{f}^{1}(t) = \pm \mathbf{I} \mathbf{f}^{1}(t) + \text{p.v.} \int_{0}^{\infty} \mathbf{T}_{\vec{\nu}_{1}(\tau, \rho)} (\mathbf{\Gamma}(t - \tau, 0)) \mathbf{f}^{1}(\tau) d\tau,$$

$$\mathbf{K}_{\mathbf{T}}^{12} \mathbf{f}^{2}(t) = -\int_{0}^{\infty} \mathbf{T}_{\vec{\nu}_{2}(\tau, \rho)} (\mathbf{\Gamma}(t - l\cos\theta, s - l\sin\theta)) \mathbf{f}^{2}(l) dl.$$

The singular integral operators in $\mathbf{K}_{\mathbf{T}}^{\pm 11}$ are multiples of the Hilbert transform by (2-6) and the operator $\mathbf{K}_{\mathbf{T}}^{12}$ is a 2×2 matrix of Hardy kernel operators with $\mathrm{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathbf{T}}^{12})$ near t=0 given by the Mellin transform of the kernel. When the identity \mathbf{I} and the Hilbert transform are considered as Mellin operators, their kernels are the distributions $\delta(t-1)$ and $h(t)=\mathrm{p.v.}\,\frac{1}{\pi}\,\frac{1}{t-1}$ respectively.

For $(t, 0) \in S_1$ and $(\cos \theta, \sin \theta) \in S_2$, we define

(4-5)
$$d^2 = t^2 - 2t\cos\theta + 1 = (t - \cos\theta)^2 + \sin^2\theta.$$

For j = 0, 1, 2, 3, let

(4-6)
$$k_{j}(t) = \frac{1}{\pi} \frac{(t - \cos \theta)^{j} (\sin \theta)^{3-j}}{d^{4}}.$$

Let $\mathscr{E}(x, y)$ be one of the scalar kernels in the matrix fundamental solution (0-13). Then $k_{\mathscr{E}_p} = -\frac{\partial \mathscr{E}}{\partial y}$ and $k_{\mathscr{E}_{\tau}} = -\frac{\partial \mathscr{E}}{\partial x}$ are double layer kernels according to (Definition 2.1). We consider the following scalar double layer potentials:

$$(4-9) \qquad u_{\mathscr{E}_{\rho}}(t,s) = \int_{\partial\Omega^{+}} \frac{\partial}{\partial\rho} \{\mathscr{E}(t-\tau,s-\rho)\} f(\tau,\rho) \, d\sigma_{\tau,\rho},$$

$$u_{\mathscr{E}_{\tau}}(t,s) = \int_{\partial\Omega^{+}} \frac{\partial}{\partial\tau} \{\mathscr{E}(t-\tau,s-\rho)\} f(\tau,\rho) \, d\sigma_{\tau,\rho}.$$

Taking limits as $s \to 0^{\pm}$, we obtain the following Mellin operators on $L^p(\mathbf{R}^+)$: (4-10)

$$K_{\mathcal{E}_{\rho}}^{\pm 11} f^{1}(t) = \lim_{s \to 0^{\pm}} \int_{0}^{\infty} -\frac{\partial \mathcal{E}}{\partial y} (t - \tau, s) f^{1}(\tau) d\tau = \int_{0}^{\infty} k_{\mathcal{E}_{\rho}}^{\pm 11} \left(\frac{t}{\tau}\right) f^{1}(\tau) \frac{d\tau}{\tau},$$

$$K_{\mathcal{E}_{\rho}}^{12} f^{2}(t) = \int_{0}^{\infty} -\frac{\partial \mathcal{E}}{\partial y} (t - l \cos \theta, -l \sin \theta) f^{2}(l) dl = \int_{0}^{\infty} k_{\mathcal{E}_{\rho}}^{12} \left(\frac{t}{l}\right) f^{2}(l) \frac{dl}{l}.$$

Similarly, we obtain the operators $K_{\mathcal{E}_{\tau}}^{\pm 11}$ and $K_{\mathcal{E}_{\tau}}^{12}$ and their corresponding kernels $k_{\mathcal{E}_{\tau}}^{\pm 11}$ and $k_{\mathcal{E}_{\tau}}^{12}$. The Mellin kernels obtained are given in the following kernel list.

In (4-11) we have used the notation δ and h for the distribution Mellin kernels $\delta(t-1)$ and p.v. $\frac{1}{\pi}\frac{1}{t-1}$ respectively.

To show the explicit dependence of the kernels on the parameter $b = \frac{\lambda + \mu}{\lambda + 2\mu}$ (cf. (0-3)), we note the following "tricks" which follow from (0-3) and (0-14): (4-12)

$$\mu m = \frac{b}{2}, \qquad \mu n = 1 - \frac{b}{2}, \qquad \mu(n+2m) = 1 + \frac{b}{2}, \qquad \lambda(m-n) = 1 - 2b,$$

$$\mu(2m-n) = \frac{3}{2}b - 1, \qquad \mu(n-m) = 1 - b, \qquad \mu(n+m) = 1.$$

We now give the structure of the operators $K_T^{\pm 11}$ and $K_N^{\pm 11}$.

Theorem 3. Let

$$\mathbf{K}_{\mathbf{T}^0}^{11} = \begin{pmatrix} 0 & H \\ -H & 0 \end{pmatrix}.$$

Then

(4-14)
$$\mathbf{K}_{\mathbf{T}}^{\pm 11} = \pm \mathbf{I} + (1 - b)\mathbf{K}_{\mathbf{T}^{0}}^{11}, \\ \mathbf{K}_{\mathbf{N}}^{\pm 11} = \pm \mathbf{I} + \frac{b}{2}\mathbf{K}_{\mathbf{T}^{0}}^{11}.$$

Proof. With $\vec{v} = -\mathbf{j}$, we have that

(4-15)
$$\mathbf{T}_{\vec{\nu}}(\mathbf{u}(\tau, \rho)) = -\left(\frac{\mu u_{1,\rho}}{\lambda u_{1,\tau} + (\lambda + 2\mu)u_{2,\rho}}\right).$$

We apply $\mathbf{T}_{\vec{\nu}(\tau,\rho)}$ to the columns of the fundamental matrix $\Gamma(t-\tau,s-\rho)$ and take limits as $s\to 0^\pm$. As a sample calculation we calculate the kernel in

the 2, 1 position. Using the kernel list (4-11), we obtain

$$-k_{T,21}^{\pm 11} = \lambda [n(-h) - m \cdot 0] + (\lambda + 2\mu)[-m(-h)]$$

$$= -h[\lambda n + (\lambda + 2\mu)(-m)]$$

$$= -h[\lambda (n - m) - 2\mu m]$$

$$= -h[2b - 1 - 2\frac{b}{2}]$$

$$= (1 - b)h.$$

Similarly

$$(4-17) -k_{N-21}^{\pm 11} = (\lambda + \mu)[n(-h) - m \cdot 0] + (\lambda + 2\mu)[-m(-h)].$$

The method of simplification to be consistently applied is to collect the coefficients of λ and μ and then to use the tricks (4-12) to write the coefficients in terms of b.

The remaining very tedious calculations are left to the reader.

To calculate the kernels in $\mathbf{K}_{\mathbf{T}}^{12}$ and $\mathbf{K}_{\mathbf{N}}^{12}$, we split the operators into

$$\mathbf{K}_{\mathbf{T}}^{12} = \sin \theta \mathbf{K}_{\mathbf{T}_{i}} - \cos \theta \mathbf{K}_{\mathbf{T}_{i}},$$

where

(4-18)
$$\mathbf{K}_{\mathbf{T}_{i}}^{12}\mathbf{f}^{2}(t) = \int_{0}^{\infty} \mathbf{T}_{i}(\Gamma(t - l\cos\theta, -l\sin\theta))\mathbf{f}^{2}(l) dl,$$

$$\mathbf{K}_{\mathbf{T}_{i}}^{12}\mathbf{f}^{2}(t) = \int_{0}^{\infty} \mathbf{T}_{i}(\Gamma(t - l\cos\theta, -l\sin\theta))\mathbf{f}^{2}(l) dl,$$

and

(4-19)
$$\mathbf{K}_{\mathbf{N}_{i}}^{12}\mathbf{f}^{2}(t) = \int_{0}^{\infty} \mathbf{N}_{i}(\mathbf{\Gamma}(t - l\cos\theta, -l\sin\theta))\mathbf{f}^{2}(l) dl,$$

$$\mathbf{K}_{\mathbf{N}_{i}}^{12}\mathbf{f}^{2}(t) = \int_{0}^{\infty} \mathbf{N}_{i}(\mathbf{\Gamma}(t - l\cos\theta, -l\sin\theta))\mathbf{f}^{2}(l) dl.$$

Note that the (-1) from the orientation has been omitted in the definitions (4-18) and (4-19).

Theorem 4. The operators in (4–18) and (4–19) have the following structure:

(4-20)
$$\mathbf{K}_{\mathbf{T}_{i}}^{12} = \mathbf{K}_{\mathbf{T}_{i}^{0}}^{12} + b\mathbf{K}_{i^{b}}, \quad \mathbf{K}_{\mathbf{T}_{j}}^{12} = \mathbf{K}_{\mathbf{T}_{j}^{0}}^{12} + b\mathbf{K}_{j^{b}}, \\ \mathbf{K}_{\mathbf{N}_{i}}^{12} = \mathbf{K}_{\mathbf{N}_{i}^{0}}^{12} + \frac{b}{2}\mathbf{K}_{i^{b}}, \quad \mathbf{K}_{\mathbf{N}_{i}}^{12} = \mathbf{K}_{\mathbf{N}_{i}^{0}}^{12} + \frac{b}{2}\mathbf{K}_{j^{b}},$$

where the Hardy kernels are

$$\mathbf{K}_{\mathbf{T}_{i}^{0}}^{12} = \begin{pmatrix} -k_{1} - k_{3} & -k_{0} - k_{2} \\ k_{0} + k_{2} & -k_{1} - k_{3} \end{pmatrix},$$

$$\mathbf{K}_{i^{b}}^{12} = \begin{pmatrix} k_{1} - k_{3} & k_{0} + 3k_{2} \\ -k_{0} + k_{2} & -k_{1} + k_{3} \end{pmatrix},$$

$$\mathbf{K}_{\mathbf{N}_{i}^{0}}^{12} = \begin{pmatrix} -k_{1} - k_{3} & 0 \\ 0 & -k_{1} - k_{3} \end{pmatrix},$$

$$\mathbf{K}_{\mathbf{N}_{i}^{0}}^{12} = \begin{pmatrix} k_{0} + k_{2} & -k_{1} - k_{3} \\ k_{1} + k_{3} & k_{0} + k_{2} \end{pmatrix},$$

$$\mathbf{K}_{\mathbf{j}^{b}}^{12} = \begin{pmatrix} -k_{0} + k_{2} & -k_{1} + k_{3} \\ -3k_{1} - k_{3} & k_{0} - k_{2} \end{pmatrix},$$

$$\mathbf{K}_{\mathbf{N}_{i}^{0}}^{12} = \begin{pmatrix} k_{0} + k_{2} & 0 \\ 0 & k_{0} + k_{2} \end{pmatrix}.$$

Proof. A typical computation is for the kernel in the 1, 1 position.

(4-22)
$$k_{T_i,11}^{12} = (\lambda + 2\mu)[n(-k_1 - k_3) - m(-2k_1)] + \lambda(-m)(k_1 - k_3)$$
$$= k_1[(\lambda + 2\mu)(-n + 2m) - \lambda m] + k_2[(\lambda + 2\mu)(-n) + \lambda m].$$

To simplify the coefficients of k_1 and k_3 , collect the coefficients of λ and μ , and apply the tricks (4-12) to obtain

$$k_{\mathbf{T}_1, 11}^{12} = k_1(-1+b) + k_3(-1-b).$$

In calculating the remaining kernels, note that the coefficients to be calculated for $k_{{\bf T}_i,\,rs}^{12}$ are the negatives of the coefficients calculated for $k_{{\bf T}_i,\,sr}^{12}$.

Again the very tedious details are left to the reader. $\ \square$

Taking into account the (-1) introduced by the orientation of the ray S_2 , we have

(4-23)
$$\mathbf{K}_{\mathbf{T}}^{12} = \sin \theta \mathbf{K}_{\mathbf{T}_{i}}^{12} - \cos \theta \mathbf{K}_{\mathbf{T}_{i}}^{12},$$
$$\mathbf{K}_{\mathbf{N}}^{12} = \sin \theta \mathbf{K}_{\mathbf{N}_{i}}^{12} - \cos \theta \mathbf{K}_{\mathbf{N}_{i}}^{12}.$$

We introduce

$$\mathbf{K}_{\mathbf{T}^{0}}^{12} = \sin \theta \mathbf{K}_{\mathbf{T}_{i^{0}}}^{12} - \cos \theta \mathbf{K}_{\mathbf{T}_{j^{0}}}^{12},$$

$$\mathbf{K}_{\mathbf{N}^{0}}^{12} = \sin \theta \mathbf{K}_{\mathbf{N}_{i^{0}}}^{12} - \cos \theta \mathbf{K}_{\mathbf{N}_{j^{0}}}^{12},$$

$$\mathbf{K}_{\bar{\nu}^{b}}^{12} = \sin \theta \mathbf{K}_{\mathbf{i}^{b}}^{12} - \cos \theta \mathbf{K}_{\mathbf{i}^{b}}^{12},$$

so that

(4-25)
$$\mathbf{K}_{\mathbf{T}}^{12} = \mathbf{K}_{\mathbf{T}^{0}}^{12} + b\mathbf{K}_{\vec{\nu}^{b}}^{12}, \\ \mathbf{K}_{\mathbf{N}}^{12} = \mathbf{K}_{\mathbf{N}^{0}}^{12} + \frac{b}{2}\mathbf{K}_{\vec{\nu}^{b}}^{12}.$$

Next we calculate $\mathbf{K}_{\{\cdot\}}^{21}$ and $\mathbf{K}_{\{\cdot\}}^{22}$.

Let U be the reflection about the ray $\{(t, s) = (l\cos\frac{\theta}{2}, l\sin\frac{\theta}{2}): l > 0\}$:

$$(4-26) U = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

Note that $UU = I_2$ and that $\det U = -1$.

Then it is "obvious" geometrically or may be verified by a calculation that

(4-27)
$$\mathbf{K}_{\mathbf{T}}^{21} = U\mathbf{K}_{\mathbf{T}}^{12}U, \quad \mathbf{K}_{\mathbf{T}}^{\pm 22} = U\mathbf{K}_{\mathbf{T}}^{\pm 11}U, \\ \mathbf{K}_{\mathbf{N}}^{21} = U\mathbf{K}_{\mathbf{N}}^{12}U, \quad \mathbf{K}_{\mathbf{N}}^{\pm 22} = U\mathbf{K}_{\mathbf{N}}^{\pm 11}U.$$

Hence both $\mathbf{K}_{\mathbf{T}}^{\pm}$ and $\mathbf{K}_{\mathbf{N}}^{\pm}$ have the structure

(4-28)
$$\mathbf{K}_{\{\cdot\}}^{\pm} = \begin{pmatrix} \mathbf{K}_{\{\cdot\}}^{\pm 11} & \mathbf{K}_{\{\cdot\}}^{12} \\ U\mathbf{K}_{\{\cdot\}}^{12} U & U\mathbf{K}_{\{\cdot\}}^{\pm 11} U \end{pmatrix}.$$

We let \hat{U} be the 4×4 matrix

$$\hat{U} = \begin{pmatrix} \mathbf{I}_2 & 0 \\ 0 & U \end{pmatrix}.$$

Then

$$(4-30) \qquad \hat{U}\mathbf{K}_{\{\cdot\}}^{\pm}\hat{U} = \begin{pmatrix} \mathbf{K}_{\{\cdot\}}^{\pm 11} & \mathbf{K}_{\{\cdot\}}^{12} U \\ \mathbf{K}_{\{\cdot\}}^{12} U & \mathbf{K}_{\{\cdot\}}^{\pm 11} \end{pmatrix}.$$

5. The symbols in a plane sector

We are now reduced to calculating the determinant of a matrix of Mellin symbols of the form

(5-1)
$$\operatorname{Smbl}^{\frac{1}{p}}(\hat{U}\mathbf{K}_{\{\cdot\}}^{\pm}\hat{U}) = \begin{pmatrix} \tilde{\mathbf{K}}_{\{\cdot\}}^{\pm 11} & \tilde{\mathbf{K}}_{\{\cdot\}}^{12} U \\ \tilde{\mathbf{K}}_{\{\cdot\}}^{12} U & \tilde{\mathbf{K}}_{\{\cdot\}}^{\pm 11} \end{pmatrix}.$$

First we note that if A and B are 2×2 matrices, then

(5-2)
$$\det\begin{pmatrix} A & B \\ B & A \end{pmatrix} = \det(A - B) \cdot \det(A + B).$$

Our goal is to express $\det (\tilde{\mathbf{K}}_{\{\cdot\}}^{\pm 11} \pm \tilde{\mathbf{K}}_{\{\cdot\}}^{12} U)$ as the difference of two squares so that the zeroes can easily be found.

We shall call *antireflective* a matrix of the form $C = \begin{pmatrix} c_{11} & c_{12} \\ -c_{12} & c_{11} \end{pmatrix}$; note that $\det C = c_{11}^2 + c_{12}^2$. We shall call *reflective* a matrix of the form $D = \begin{pmatrix} d_{11} & d_{12} \\ d_{12} & -d_{11} \end{pmatrix}$; note that $\det D = -(d_{11}^2 + d_{12}^2)$. Finally observe that if C is antireflective and D is reflective, then

(5-3)
$$\det(C \pm D) = (c_{11}^2 + c_{12}^2) - (d_{11}^2 + d_{12}^2) = \det C + \det D.$$

First we record the structure of $\operatorname{Smbl}^{\frac{1}{p}}\left(\mathbf{K}_{\{\cdot\}}^{\pm 11}\right)$ near t=0. If $\mathbf{K}_{\mathbf{T}^0}^{11}$ is as defined in (4-13), it is immediate that near t=0,

(5-4)
$$\sin \pi z \operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathbf{T}^{0}}^{11})(t, z) = \begin{pmatrix} 0 & -\cos \pi z \\ \cos \pi z & 0 \end{pmatrix};$$

the matrix in (5-4) is antireflective.

Theorem 5. Near t = 0, the matrices $Smbl^{\frac{1}{p}}(\mathbf{K}_{\{\cdot\}}^{\pm 11})$ are antireflective; the symbols are given by

$$\sin \pi z \operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathbf{T}}^{\pm 11})(t, z) = \begin{pmatrix} \pm \sin \pi z & -(1-b)\cos \pi z \\ (1-b)\cos \pi z & \pm \sin \pi z \end{pmatrix},$$

$$\sin \pi z \operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathbf{N}}^{\pm 11})(t, z) = \begin{pmatrix} \pm \sin \pi z & -\frac{b}{2}\cos \pi z \\ \frac{b}{2}\cos \pi z & \pm \sin \pi z \end{pmatrix}.$$

To calculate the symbols of the Hardy kernel operators in (4-21), we give the Mellin transforms of the kernels. First we introduce

(5-6)
$$\begin{split} C_{\theta}(z) &= \cos((\pi - \theta)z + \theta), \\ S_{\theta}(z) &= \sin((\pi - \theta)z + \theta). \end{split}$$

We list the following table of Mellin tranforms for the kernels $k_j(t)$ defined by (4-6):

$$\sin \pi z \, \tilde{k}_0(z) = \frac{1}{2} \{ (-z+2) \sin \theta C_\theta(z-1) - \cos \theta S_\theta(z-1) \} \,,$$

$$\sin \pi z \, \tilde{k}_1(z) = -\frac{1}{2} \{ (z-1) \sin \theta S_\theta(z-1) \} \,,$$

$$\sin \pi z \, \tilde{k}_2(z) = \frac{1}{2} \{ z \sin \theta C_\theta(z-1) - \cos \theta S_\theta(z-1) \} \,,$$

$$\sin \pi z \, \tilde{k}_3(z) = \frac{1}{2} \{ (z+1) \sin \theta S_\theta(z-1) + 2 \cos \theta C_\theta(z-1) \} \,.$$

For obvious reasons we note the following formulas which follow easily from (5-7) and the trigonometric addition formulas.

$$\sin \pi z (\tilde{k}_{0}(z) - \tilde{k}_{2}(z)) = (-z+1) \sin \theta C_{\theta}(z-1) ,$$

$$\sin \pi z (\tilde{k}_{1}(z) - \tilde{k}_{3}(z)) = -z \sin \theta S_{\theta}(z-1) - \cos \theta C_{\theta}(z-1) ,$$

$$\sin \pi z (\tilde{k}_{0}(z) + 3\tilde{k}_{2}(z)) = (z+1) \sin \theta C_{\theta}(z-1) - 2 \cos \theta S_{\theta}(z-1) ,$$

$$\sin \pi z (3\tilde{k}_{1}(z) - \tilde{k}_{3}(z)) = (-z+2) \sin \theta S_{\theta}(z-1) + \cos \theta C_{\theta}(z-1) ,$$

$$\sin \pi z (\tilde{k}_{0}(z) + \tilde{k}_{2}(z)) = \sin \theta C_{\theta}(z-1) - \cos \theta C_{\theta}(z-1) ,$$

$$= -\sin((\pi-\theta)(z-1)) ,$$

$$\sin \pi z (\tilde{k}_{1}(z) + \tilde{k}_{3}(z)) = \cos \theta C_{\theta}(z-1) + \sin \theta S_{\theta}(z-1) ,$$

$$= \cos((\pi-\theta)(z-1)) .$$

The structure of the symbols of the operators (4–24) is explained in Theorem 6. We first introduce the reflective matrix

$$(5-8) V = \begin{pmatrix} \sin \theta & -\cos \theta \\ -\cos \theta & -\sin \theta \end{pmatrix}.$$

Theorem 6. The symbols of the operators $\mathbf{K}_{\mathbf{T}^0}^{12}U$ and $\mathbf{K}_{\mathbf{N}^0}^{12}U$ are reflective matrices and satisfy (5-10)

$$\sin \pi z \operatorname{Smbl}^{\frac{1}{p}} \left(\mathbf{K}_{\mathbf{T}^{0}}^{12} U \right) (t, z) = \begin{pmatrix} \sin(\pi - \theta)(z - 1) & -\cos(\pi - \theta)(z - 1) \\ -\cos(\pi - \theta)(z - 1) & -\sin(\pi - \theta)(z - 1) \end{pmatrix},$$

$$= -\sin(\pi - \theta)z U - \cos(\pi - \theta)z V,$$

$$\sin \pi z \operatorname{Smbl}^{\frac{1}{p}} \left(\mathbf{K}_{\mathbf{N}^{0}}^{12} U \right) (t, z) = -\sin(\pi - \theta)z U.$$

The symbol of the operator $\mathbf{K}_{\vec{v}^b}^{12}$ is a matrix of the form $\{z \times antireflective + reflective\}$ and satisfies

(5-11)
$$\sin \pi z \operatorname{Smbl}^{\frac{1}{p}} \left(\mathbf{K}_{\vec{\nu}^b}^{12} U \right) (t, z) = z \sin \theta \begin{pmatrix} \cos(\pi - \theta)z & -\sin(\pi - \theta)z \\ \sin(\pi - \theta)z & \cos(\pi - \theta)z \end{pmatrix} + \cos(\pi - \theta)zV.$$

Finally we are ready to calculate $\det (\tilde{\mathbf{K}}_{\{\cdot\}}^{\pm 11} \pm \tilde{\mathbf{K}}_{\{\cdot\}}^{12} U)$. To avoid further confusion, we now calculate $\det \mathrm{Smbl}^{\frac{1}{p}} (\mathbf{K}_{\{\cdot\}}^+)$.

Define

(5-12)
$$f_{\mathbf{T}}^{\oplus \pm}(z) = \det\left(\sin \pi z (\tilde{\mathbf{K}}_{\mathbf{T}}^{+11} \pm \tilde{\mathbf{K}}_{\mathbf{T}}^{12} U)\right),$$
$$f_{\mathbf{N}}^{\oplus \pm}(z) = \det\left(\sin \pi z (\tilde{\mathbf{K}}_{\mathbf{N}}^{+11} \pm \tilde{\mathbf{K}}_{\mathbf{N}}^{12} U)\right).$$

Next define

$$g_{T}^{++}(z) = bz \sin \theta + (2 - b) \sin(2\pi - \theta)z$$

$$= -bz \sin(2\pi - \theta) + (2 - b) \sin(2\pi - \theta)z,$$

$$g_{T}^{--}(z) = bz \sin \theta - (2 - b) \sin(2\pi - \theta)z$$

$$= -bz \sin(2\pi - \theta) - (2 - b) \sin(2\pi - \theta)z,$$

$$g_{T}^{+-} = b(z \sin \theta + \sin \theta z),$$

$$g_{T}^{-+} = b(z \sin \theta - \sin \theta z).$$

Let

$$g_{\mathbf{N}}^{++}(z) = \frac{b}{2}z\sin\theta + \left(1 - \frac{b}{2}\right)\sin(2\pi - \theta)z$$

$$= -\frac{b}{2}z\sin(2\pi - \theta) + \left(1 - \frac{b}{2}\right)\sin(2\pi - \theta)z,$$

$$g_{\mathbf{N}}^{--}(z) = \frac{b}{2}z\sin\theta - \left(1 - \frac{b}{2}\right)\sin(2\pi - \theta)z$$

$$= -\frac{b}{2}z\sin\theta - \left(1 - \frac{b}{2}\right)\sin(2\pi - \theta)z,$$

$$g_{\mathbf{N}}^{+-} = \frac{b}{2}z\sin\theta + \left(1 + \frac{b}{2}\right)\sin\theta z,$$

$$g_{\mathbf{N}}^{-+} = \frac{b}{2}z\sin\theta - \left(1 + \frac{b}{2}\right)\sin\theta z.$$

Theorem 7. We have that

(5-15)
$$f_{\mathbf{T}}^{\oplus \pm}(z) = g_{\mathbf{T}}^{\pm +}(z) \cdot g_{\mathbf{T}}^{\pm -}(z), f_{\mathbf{N}}^{\oplus \pm}(z) = g_{\mathbf{N}}^{\pm +}(z) \cdot g_{\mathbf{N}}^{\pm -}(z).$$

Proof. Let

(5-16)
$$A^{\pm} = \sin \pi z (\tilde{\mathbf{K}}_{\mathbf{T}}^{+11} \pm \tilde{\mathbf{K}}_{\mathbf{T}}^{12} U).$$

Using (4-25), (5-10), and (5-11), the antireflective part of A^{\pm} is (5-17)

$$A_{\rm anti}^{\pm} = \sin \pi z \left(\mathbf{I}_2 + (1-b) \tilde{\mathbf{K}}_{\mathbf{T}^0}^{11} \right) \pm z (\sin \theta) \begin{pmatrix} \cos(\pi-\theta)z & -\sin(\pi-\theta)z \\ \sin(\pi-\theta)z & \cos(\pi-\theta)z \end{pmatrix},$$

which has determinant given by

$$(5-18) \left(\sin \pi z \pm bz \sin \theta \cos(\pi - \theta)z\right)^2 + \left((1-b)\cos \pi z \pm bz \sin \theta \sin(\pi - \theta)z\right)^2.$$

From (4-25) and (5-11), the reflective part of A^{\pm} is

(5-19)
$$A_{\text{refl}}^{\pm} = \pm (\tilde{\mathbf{K}}_{\mathbf{T}^{0}}^{12} U + b \cos(\pi - \theta) z V),$$

which has determinant given by

$$-\left[\left(\cos\theta\sin(\pi-\theta)z + (1-b)\sin\theta\cos(\pi-\theta)z\right)^{2} + \left(\sin\theta\sin(\pi-\theta)z - (1-b)\cos\theta\cos(\pi-\theta)z\right)^{2}\right]$$

$$= -\left[\sin^{2}(\pi-\theta)z + (1-b)^{2}\cos^{2}(\pi-\theta)z\right].$$

Thus

$$f_{\mathbf{T}}^{\oplus \pm}(z) = \{\sin^2 \pi z - \sin^2 (\pi - \theta)z\} + (1 - b)^2 \{\cos^2 \pi z - \cos^2 (\pi - \theta)z\} + b^2 z^2 \sin^2 \theta \pm 2bz \sin \theta \{\sin \pi z \cos(\pi - \theta)z + (1 - b)\cos \pi z \sin(\pi - \theta)z\}.$$

In the last two terms of (5-21) we complete the square to obtain (5-22)

$$\int_{\mathbf{T}}^{\oplus \pm} (z) = (bz \sin \theta \pm (\sin \pi z \cos(\pi - \theta)z + (1 - b)\cos \pi z \sin(\pi - \theta)z))^{2} + \text{rest},$$

where

rest =
$$\sin^2 \pi z - \sin^2 (\pi - \theta)z + (1 - b)^2 [\cos^2 \pi z - \cos^2 (\pi - \theta)z]$$

 $- (\sin \pi z \cos(\pi - \theta)z + (1 - b)\cos \pi z \sin(\pi - \theta)z)^2$
 $= -2(1 - b)\sin \pi z \cos(\pi - \theta)z\cos \pi z \sin(\pi - \theta)z$
 $+ \{\sin^2 \pi z - \sin^2 (\pi - \theta)z - \sin^2 \pi z \cos^2 (\pi - \theta)z\}$
 $+ (1 - b)^2 \{\cos^2 \pi z - \cos^2 (\pi - \theta)z - \cos^2 \pi z \sin^2 (\pi - \theta)z\}.$

The two terms in $\{\cdot\}$ simplify respectively to $-\cos^2 \pi z \sin^2(\pi - \theta)z$ and $-\sin^2 \pi z \cos^2 (\pi - \theta)z$ so that

(5-24)
$$\operatorname{rest} = -\{\cos \pi z \sin(\pi - \theta)z + (1 - b)\sin \pi z \cos(\pi - \theta)z\}^{2}.$$

From (5-22) and (5-24), the function $f_{\mathbf{T}}^{\oplus \pm}$ has been written as the difference of two squares $\alpha^2 - \beta^2$ so that of course $f_{\mathbf{T}}^{\oplus \pm} = (\alpha + \beta)(\alpha - \beta)$. That the terms have the form given by (5-15) follows from the addition formulas. The explicit calculations for $f_N^{\oplus \pm}$ proceed in a like manner. \Box

Remark. In a similar manner we may calculate

(5-25)
$$f_{\mathbf{T}}^{\Theta\pm}(z) = \det\left(\sin\pi z (\tilde{\mathbf{K}}_{\mathbf{T}}^{-11} \pm \tilde{\mathbf{K}}_{\mathbf{T}}^{12} U)\right),$$
$$f_{\mathbf{N}}^{\Theta\pm}(z) = \det\left(\sin\pi z (\tilde{\mathbf{K}}_{\mathbf{N}}^{-11} \pm \tilde{\mathbf{K}}_{\mathbf{N}}^{12} U)\right).$$

In the calculation the determinant of the reflective part is unchanged and for the determinant of the antireflective part (5-18) is replaced by

$$(5-26) \left(-\sin\pi z \pm bz\sin\theta\cos(\pi-\theta)z\right)^2 + \left((1-b)\cos\pi z \pm bz\sin\theta\sin(\pi-\theta)z\right)^2.$$

The final result is that

(5-27)

$$\det \left(\sin \pi z \operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathbf{T}}^{-})\right) = (bz\sin \theta - b\sin(2\pi - \theta z))(bz\sin \theta - (2 - b)\sin \theta z) \\ \times (bz\sin \theta + b\sin(2\pi - \theta z))(bz\sin \theta + (2 - b)\sin \theta z).$$

As expected, det $(\sin \pi z \operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathbf{T}}^{-}))$ has the same form as

$$\det\left(\sin\pi z\,\mathrm{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathbf{T}}^{+})\right),\,$$

with the roles of θ and $2\pi - \theta$ interchanged, since $2\pi - \theta$ is the "interior" angle for the complement of Ω^+ .

6. The singularities of the principal symbol

The zeroes and change in argument of $\det(\operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\{\cdot\}}^+)) = (\sin \pi z)^{-4} f_{\{\cdot\}}^{\oplus +}(z)$. $f_{\{\cdot\}}^{\oplus -}(z)$ can be easily calculated from (5-15). Essentially we must consider functions of the form

(6-1)
$$g_{\alpha,\gamma}(z) = \frac{\sin \gamma z}{\gamma z} - \alpha \frac{\sin \gamma}{\gamma},$$

where $-1 \le \alpha \le 1$ and $0 < \gamma < 2\pi$. An interesting discussion of all the complex zeroes of (6-1) is given in Vasilopoulos [V] or Karal and Karp [KK]. Let $g(Z) = \sin Z/Z$; of course g(Z) has simple zeroes at $Z = \pm n\pi$, n =1, 2, The next lemma is a summary of the remarks of [V, pp. 57 ff.] and is proved using the Argument Principle.

Lemma 6.1. Let 0 < C < 1. Then the equation

$$(6-2) g(Z) - C = 0$$

has exactly one root in the strip $\Gamma_{0,\pi}$, has no roots in the strips $\Gamma_{(2n-1)\pi,2n\pi}$, $n=1,2,\ldots$, and has exactly two roots in the strips $\Gamma_{2n\pi,(2n+1)\pi}$, $n=1,2,\ldots$

The equation

$$(6-3) g(Z) + C = 0$$

has no roots in the strips $\Gamma_{(2n-2)\pi,(2n-1)\pi}$, $n=1,2,\ldots$, and has exactly two roots in the strips $\Gamma_{(2n-1)\pi,2n\pi}$, $n=1,2,\ldots$

Proof. The lemma follows from calculating the change in argument of $g(Z)\pm C$ on the contours $\Gamma_{n\pi} = \{Z = n\pi + iY: -\infty < Y < +\infty\}$. Let

$$g_n(Y) = g(n\pi + iY) = (-1)^n \frac{(Y + n\pi i)\sinh(\pi Y)}{n^2\pi^2 + Y^2}.$$

The change in argument of $g_0(Y)\pm C$ is 0; the change in argument of $g_{2k-1}(Y)-C$ is 0 and the change in argument of $g_{2k}(Y)-C$ is -2π ; in contrast, the change in argument of $g_{2k}(Y)+C$ is 0 and the change in argument of $g_{2k-1}(Y)+C$ has change in argument -2π . Taking into account the change in argument of $g(X\pm i\infty)\pm C$, the Argument Principle gives the lemma. \Box

We denote by $\gamma_{\rm crit}$ the point where the minimum value of g(t) on $[0, 2\pi]$ occurs; $\tan \gamma_{\rm crit} = \gamma_{\rm crit}$; $\gamma_{\rm crit} \approx 257^{\circ}27'$.

Lemma 6.2. Consider the equation

$$(6-4) g_{\alpha,\gamma}(z) = \frac{\sin \gamma z}{\gamma z} - \alpha \frac{\sin \gamma}{\gamma} = 0, z \in \Gamma_{0,1}.$$

- (1) Let $\alpha=1$. For $0<\gamma\leq\gamma_{\rm crit}$, the equation (6-4) has no roots in $\Gamma_{0,1}$; for $\gamma_{\rm crit}<\gamma<2\pi$ there is a single root $z_0(1,\gamma)\in\Gamma_{0,1}$ which decreases monotonically from 1 to $\frac{1}{2}$ as γ increases from $\gamma_{\rm crit}$ to 2π .
- (2) Let $-1 \le \alpha < 1$. For $0 < \gamma \le \pi$, the equation (6–4) has no roots in $\Gamma_{0,1}$; for $\pi < \gamma < 2\pi$ there is a single root $z_0(\alpha, \gamma) \in \Gamma_{0,1}$ which, for fixed α , decreases monotonically from 1 to $\frac{1}{2}$ as γ increases from π to 2π .

Proof. The stated roots are understood easily by sketching the graph of g on $[0, 2\pi]$. That there are no complex roots follows from Lemma 5.1. \square

We are now ready to announce the zeroes of $\det(\mathrm{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathrm{T}}^{+}))$. First observe that if b=0, we have that g_{T}^{+-} and g_{T}^{-+} are identically 0; in particular $\mathrm{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathrm{T}}^{+})(\frac{1}{p}\pm i\infty)$ has rank 2; this shows that the boundary operator $\mathbf{T}(\mathbf{u})\vec{\nu}$ does not cover L. The following theorem summarizes the roots of $\det(\mathrm{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\mathrm{T}}^{+}))=0$ in Γ_{0-1} .

Theorem 8. (1) *For* t = 0:

(6-5)
$$\det(\operatorname{Smbl}^{\frac{1}{p}} \mathbf{K}_{\{\cdot\}}^{+}) = \frac{1}{\sin^{4} \pi z} g_{\{\cdot\}}^{++}(z) g_{\{\cdot\}}^{+-}(z) g_{\{\cdot\}}^{-+}(z) g_{\{\cdot\}}^{--}(z).$$

(2) The equations $g_{\mathbf{N}}^{++} = 0$ and $g_{\mathbf{N}}^{--} = 0$ have roots where

(6-6)
$$\frac{\sin(2\pi - \theta)z}{2\pi - \theta} = \frac{b}{2 - b} \frac{\sin(2\pi - \theta)}{2\pi - \theta};$$

Equation (6-6) has a root z_0 in $\Gamma_{0,1}$ for $0<\theta<\pi$ $(0\leq b<1)$, or for only $0<\theta<2\pi-\gamma_{\rm crit}$ (b=1).

(3) The equations $g_T^{--} = 0$ and $g_N^{++} = 0$ have roots where

(6-7)
$$\frac{\sin(2\pi - \theta)z}{(2\pi - \theta)z} = -\frac{b}{2-b} \frac{\sin(2\pi - \theta)}{2\pi - \theta}.$$

Equation (6-7) has a root z_0 in $\Gamma_{0,1}$ for $0 < \theta < \pi$ $(0 \le b \le 1)$.

(4) The equation $g_{\mathbf{T}}^{+-} = 0$ has a root where

$$\frac{\sin\theta z}{\theta z} = -\frac{\sin\theta}{\theta}.$$

Equation (6–8) has a root z_0 in $\Gamma_{0,1}$ iff $\pi < \theta < 2\pi$.

(5) The equation $g_T^{-+} = 0$ has a root where

$$\frac{\sin \theta z}{\theta z} = \frac{\sin \theta}{\theta}.$$

Equation (6-9) has a root z_0 in $\Gamma_{0,1}$ iff $2\pi - \gamma_{\rm crit} < \theta < 2\pi$.

(6) The equation $g_N^{+-} = 0$ has a root where

$$\frac{\sin\theta z}{\theta z} = -\frac{b}{2+b} \frac{\sin\theta}{\theta}.$$

Equation (6–10) has a root z_0 in $\Gamma_{0.1}$ iff $\pi < \theta < 2\pi$.

(7) The equation $g_N^{-+} = 0$ has a root where

$$\frac{\sin \theta z}{\theta z} = \frac{b}{2+b} \frac{\sin \theta}{\theta}.$$

Equation (6-11) has a root z_0 in $\Gamma_{0,1}$ iff $\pi < \theta < 2\pi$.

- (8) If $0 < b \le 1$, for $0 < \frac{1}{p} \le \frac{1}{2}$ the change in argument of $\det \left(\operatorname{Smbl}^{\frac{1}{p}} \mathbf{K}_{\{\cdot\}}^+ \right)$ on the contour $\Gamma_{\underline{1}}$ is 0.
- (9) If $0 < b \le 1$, when $\theta = \pi$, for $0 < \frac{1}{p} < 1$ the change in argument of $\det(\mathrm{Smbl}^{\frac{1}{p}} \mathbf{K}_{\{\cdot\}}^+)$ on the contour $\Gamma_{\frac{1}{p}}$ is 0.

Proof. Statement (1) is Theorem 6; statements (2)–(7) follow from Lemma 5.2. Statements (8) and (9) are proved by calculating the change in argument near $\frac{1}{p} = 0$ and the Argument Principle. \square

Remark. At the zeroes of $\det(\mathrm{Smbl}^{\frac{1}{p}}\mathbf{K}_{\{\cdot\}}^+)$ the eigenvectors of the the 2×2 matrices A^{\pm} are easily computed; in turn the eigenvectors of $\hat{U}\tilde{\mathbf{K}}_{\{\cdot\}}^+\hat{U}$ and $\tilde{\mathbf{K}}_{\{\cdot\}}^+$ are calculated.

Definition 6.1. With $\mathbf{K}_{\{\cdot\}}^{\pm}$ as in equation (4–28), for $\frac{1}{p}$ not a zero of $\det(\sin \pi z \operatorname{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\{\cdot\}}^{\pm}))$, define (6–12)

 $I_{\{\cdot\}}^{\pm}(\frac{1}{p}, b, \theta) = [number\ of\ zeroes\ of\ \det(\sin\pi z\ \mathrm{Smbl}^{\frac{1}{p}}(\mathbf{K}_{\{\cdot\}}^{\pm}))\ in\ (0, \frac{1}{p})].$

We note the following facts about $I_{\{\cdot\}}^{\pm}(\frac{1}{p}, b, \theta)$.

- (1) $I_{\{\cdot\}}^{\pm}(\frac{1}{p}, b, \theta) = \frac{1}{2\pi}$ (change in arg of $\det \tilde{\mathbf{K}}_{\{\cdot\}}^{\pm}$ on $\Gamma_{\frac{1}{p}}$).
- (2) $I_{\{\cdot\}}^+(\frac{1}{p}, b, \theta) = I_{\{\cdot\}}^-(\frac{1}{p}, b, 2\pi \theta)$.
- $(3) \ \ \text{For} \ \ 0 < \theta < \pi \ , \ \ I^+_{\mathbf{T}}(\tfrac{1}{p} \ , \ b \ , \ \theta) = I^+_{\mathbf{N}}(\tfrac{1}{p} \ , \ b \ , \ \theta) \ .$
- (4) For $\pi < \theta < 2\pi$, $I_{\mathbf{T}}^{+}(\frac{1}{p}, b, \theta) = I_{\mathbf{T}}^{-}(\frac{1}{p}, b, 2\pi \theta)$ is independent of b for 0 < b < 1.

Let us now return to the problem on the domain Ω^+ as described in §4. For $\mathbf{f} \in L^p(\partial \Omega^+)$, let

(6-13)
$$\mathbf{K}_{\mathbf{T}}^{\pm}\mathbf{f}(P) = \pm \mathbf{I}\mathbf{f}(P) + \text{p.v.} \int_{\partial\Omega^{+}} \mathbf{T}_{\vec{\nu}(Q)}(\mathbf{\Gamma}(X-Q))\mathbf{f}(Q) d\sigma_{Q},$$

$$\mathbf{K}_{\mathbf{T}}^{\pm}\mathbf{f}(P) = \pm \mathbf{I}\mathbf{f}(P) + \mathrm{p.v.} \int_{\partial\Omega^{+}} \mathbf{N}_{\vec{\nu}(Q)}(\mathbf{\Gamma}(X-Q))\mathbf{f}(Q) \, d\sigma_{Q}.$$

When (6-13) or (6-14) is written as a big $4N\times 4N$ system of Mellin operators as in (3-1) ff., the operators $K^{(2i)}$ of (3-3) correspond to the operator $\mathbf{K}^{\pm}_{\{\cdot\}}$ of (4-28) with $\theta=\theta_{2i}$; the operators $K^{(2i-1)}$ of (3-3) correspond to the operator $\mathbf{K}^{\pm}_{\{\cdot\}}$ of (4-28) with $\theta=\pi$. Using Theorem 2, Theorem 7, and Theorem 8, we obtain

Theorem 9. Let $\mathbf{K}_{\{\cdot\}}^{\pm}$ denote one of the operators (6–13) or (6–14). Then

- (1) For $1 , <math>\mathbf{K}_{\{\cdot\}}^{\pm}$ is a Fredholm operator on $L^p(\partial \Omega^+)$ iff for all j, $j = 1, \ldots, N$, the operators (4–28), with $\theta = \theta_{2j}$, is a Fredholm operator on $\left[L^p(\mathbf{R}^+)\right]^4$.
- (2) If b = 0, $\mathbf{K}_{\mathbf{T}}^{\pm}$ is not a Fredholm operator on $L^p(\partial \Omega^+)$ for any p, 1 .
- (3) If b=0, $\mathbf{K}_{\mathbf{N}}^{\pm}$ is not a Fredholm operator on $L^{p}(\partial \Omega^{+})$ iff for some j, $j=1,\ldots,N$, $\sin(\theta_{2j}\frac{1}{p})=0$ or $\sin((2\pi-\theta_{2j})\frac{1}{p})=0$.
- (4) If $0 < b \le 1$, $\mathbf{K}_{\{\cdot\}}^{\pm}$ is a Fredholm operator on $L^p(\partial \Omega^+)$ for all p, 2 .
- (5) If $0 < b \le 1$, the "bad values" of p in (1, 2), for which the operators $\mathbf{K}^{\pm}_{\{\cdot\}}$ are not Fredholm on $L^p(\partial \Omega^+)$ form a discrete set of cardinality at most 2N.
- (6) If p is a "good value" for which $\mathbf{K}_{\{\cdot\}}^{\pm}$ is a Fredholm operator on $L^p(\partial \Omega^+)$, the index of $\mathbf{K}_{\{\cdot\}}^{\pm}$ on $L^p(\partial \Omega^+)$ is given by

(6-15)
$$\operatorname{ind}_{p}\left(\mathbf{K}_{\{\cdot\}}^{\pm}\right) = \sum_{j=1}^{N} I_{\{\cdot\}}^{\pm}(\frac{1}{p}, b, \theta_{2j}).$$

Proof. The determinant of the symbols of (6-13) and (6-14) are calculated using Theorem 2. Statements (1), (2), and (3) follow from the formulas (5-13) and (5-14). Statements (4) and (5) follow from Theorem 2, statements (8) and (9), applied to the operators (4-28). Statement (6) is the Index Theorem, Theorem 1. \square

Remarks. When uniqueness is shown for a double layer potential on $L^2(\partial\Omega^+)$, for the "good values" of p the index on $L^p(\partial\Omega^+)$ is the dimension of the kernel since uniqueness for the adjoint holds in $L^q(\partial\Omega^+)$, $2 \le q < \infty$.

In contrast to the case of a finite interval, for the "good values" of p, the operators (4-28) have index = 0 on $[L^p(\mathbf{R}^+)]^4$. Cf. [E] or [LP, Definition 3.2] for the correct notion of principal symbol in this case; the change in argument of $\det(\mathrm{Smbl}^{\frac{1}{p}}\mathbf{K}_{\{\cdot\}}^{\pm})$ at t=0 is killed by the change in argument at $t=\infty$.

REFERENCES

- [C] M. Costabel, Singular integral operators on curves with corners, Integral Equations and Operator Theory 3 (1980), 323-349.
- [DKV] B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota, Boundary value problems for the systems of elastostatics in Lipschitz domains, Duke Math. J. 57 (1988), 795-818.
- [E] J. Elschner, Asymptotics of solutions of pseudodifferential equations of Mellin type, Math. Nachr. 130 (1987), 267-305.
- [FKV] E. B. Faves, C. E. Kenig, and G. C. Verchota, *The Dirichlet problem for the Stokes system on Lipschitz domain*, Duke Math. J. 57 (1988), 769-795.
- [La] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, Gordon and Breach, 1963.
- [LP] J. E. Lewis and C. Parenti, *Pseudodifferential operators of Mellin type*, Comm. Partial Differential Equations 8 (1983), 477-544.
- [F] C. J. Karal and S. N. Karp, *The elastic-field behavior in the neighborhood of a crack of arbitrary angle*, Comm. Pure Appl. Math. **15** (1962), 413-421.
- [Ku] V. D. Kupradze, Potential methods in the theory of elasticity, Israel Program for Scientific Translations, Jerusalem, 1965.
- [St] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1966.
- [V] D. Vasilopoulos, On the determination of higher order terms of singular elastic stress fluids near corners, Numer. Math. 53 (1988), 51-96.

Department of Mathematics, University of Illinois at Chicago, P.O. Box 4348, Chicago, Illinois 60680–4348 (U12585@UICVM.BITNET)